Telegram Group & Telegram Channel
Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/79
Create:
Last Update:

Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/79

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA